EVALUATION OF TRAVEL MODEL SPEEDS AND PERFORMANCE OF EXISTING MONITORING SYSTEMS IN THE SOUTH COAST #### **Presented to:** **Modeling Task Force** By: Tom Carlson and Bob Dulla Sierra Research May 22, 2002 #### **OVERVIEW** - Study objectives - Review of existing systems and technologies - Analysis of PeMS speeds - Analysis of travel model speeds - Summary of conclusions and recommendations #### STUDY OBJECTIVES ### **Background** - The relationship between transportation and air quality planning and modeling has become more complex - Travel model speeds are utilized to generate motor vehicle emission inventory estimates used in AQMP/SIP attainment demonstrations and transportation conformity determinations - Recent improvements to SCAG's travel demand model have led to changes in speed estimates for both freeway and arterial roadways relative to the previous model - Travel speed significantly affects vehicle emissions: # MVEI7G Running Emission Factors by Speed Calendar Year 2010, Catalyst Light-Duty Autos #### **STUDY OBJECTIVES (cont.)** - A general lack of <u>measured</u> speed data exist to examine (and validate) travel model-predicted speeds - Speed estimates from existing roadway performance monitoring systems <u>may</u> serve as a potential source for model validation ### **Objectives** - Evaluate existing sources of real world speed measurements in South Coast to: - 1. Validate speed/travel time estimates produced by SCAG model - 2. Track long-term changes and trends in network performance #### **Study Tasks** - 1. Review existing speed monitoring systems and measurement technologies - 2. Compare PeMS speed estimates to chase car speed measurements on freeways - 3. Compare SCAG travel model speeds to chase car speed measurements on both freeways and arterials ## **EXISTING MONITORING SYSTEMS REVIEW** | Available Speed Measurements for The South Coast | | | | | | | |--|--------------------------|---|-----------------------------------|---|------------------------------------|--| | Measurement
Systems | Road
Types
Covered | Technology | Time
Periods
Represented | Validation | Availability | | | PEMS | Freeways | Loop Induction | 1/1/98 —
Present | Dual Loop
System in
Berkeley | Internet Website | | | ATSAC | Arterials | Loop Induction | Most recent
two week
period | Floating Car &
Laser Studies | Contact LA Dept. of Transportation | | | Caltrans Chase
Car Studies All | | Custom Speed
Sensor, Laser
Rangefinder
and GPS | Fall 2000,
Fall 2001 | Duplicate
Measurements
from Second
Chase Car | Contact Caltrans | | | ARB GPS
Studies | I AII I | | Last 3-4
years | Differentially corrected position data | Contact ARB | | # **EXISTING MONITORING SYSTEMS REVIEW (cont.)** | | Summary of Findings | |----------------------------------|---| | System | Key Findings | | PEMS | Uses adaptive "g-factor" methodology to translate flow and occupancy into speed estimates Provides lane-specific information Raw data collected at 30-second intervals Data available 24/7 since 1998 from over 3,000 loops covering over 800 freeway miles in District 7 Potentially attractive source of freeway speed | | ATSAC | Loops located at intersection approaches to aid in signal timing optimization Speed estimates are "point in space" values LA City estimates speeds accurate to ± 5-10 mph and speed validation studies are limited Data currently archived for most recent two week period Not viable source of arterial <u>link</u> speeds at this time | | Caltrans
Chase Car
Studies | Second-by-second speeds measured by following randomly selected vehicles Fall 2000 study collected measurements over 100 OD-based road routes, driven twice each (covered mixture of roadways) Fall 2001 study focused intensive sampling of three freeway corridors in Los Angeles/Long Beach (I-105E/W, I-110N) Data collection was not optimized for model speed validation | | ARB GPS
Studies | In-house research designed to develop a GPS instrumentation package and turnkey analysis system to measure vehicle speed and trips Speeds measured from a limited set of vehicles instrumented in conjunction with ARB Surveillance Program Spatial processing necessary to identify roadways and times vehicles were driven under "deployed" study Initial spatial processing system not fully reliable | #### **ANALYSIS OF PEMS SPEEDS** - Chase car speed measurements from Fall 2001 freeway study were compared to PeMS speeds from mainline loops along I-105E, I-105W and I-110N corridors - Chase car speeds were measured from 8:00 AM to 9:30 PM on nine midweek days during mid-November - Measured speeds were compared to PeMS speeds obtained from UC-Berkeley/PATH on a 5-minute basis - The spatial basis for comparison was defined by segmenting each freeway corridor into "sections" (consistent with HCM) - Freeway sections represent a similar roadway length to freeway links defined in SCAG's modeling network - The <u>average</u> speed measured by the chase car as is traversed each section was compared to the PeMS speed for the 5-minute period during which the traverse occurred - This approach was favored over an <u>instantaneous</u> chase car speed comparison because of the ultimate goal of validating modeling link speeds - Comparisons were performed by lane for sections which contained mainline loops (28 out of 40) - The resulting analysis dataset contained over 4,500 paired (chase car vs. PeMS) speed observations | | mmary o
Treeway F | - | - | • | | | |---------------------------------------|----------------------|-----------------|---------------------|-----------------|---------------------|-----------------| | | | 105 E | | 105 W | | 110 N | | | | AM^b | Midday ^c | AM^b | Midday ^c | PM^d | | Sample Size ^a | | 565 | 1173 | 572 | 1503 | 689 | | | Av | erage Speed | ds (mph) | | | | | PeMS
Speed | Mean
(StdErr) | 55.05
(0.56) | 50.23
(0.47) | 52.58
(0.54) | 57.81
(0.24) | 63.44
(0.11) | | Chase Car (CC)
Speed | Mean
(StdErr) | 66.80
(0.37) | 61.91
(0.39) | 55.62
(0.61) | 64.07
(0.21) | 67.98
(0.23) | | | Spee | d Comparis | ons (mph) | | | | | CC-PeMS | Mean
(StdErr) | 11.75
(0.58) | 11.67
(0.41) | 3.04
(0.38) | 6.27
(0.27) | 4.55
(0.26) | | | t value prob>t | 17.6
< 0.01 | 19.2
< 0.01 | 3.7
< 0.01 | 19.6
< 0.01 | 17.6 < 0.01 | | Normalized Difference
(CC-PeMS)/CC | Mean
(StdErr) | 0.16
(0.02) | 0.17
(0.01) | 0.02
(0.01) | 0.09
(< 0.01) | 0.06
(<0.00) | | PeMS>CC | Number (%) | 67
(11.9%) | 202
(17.2%) | 196
(34.3%) | 296
(19.7%) | 170
(24.7%) | | CC>PeMS | Number (%) | 498
(88.1%) | 971
(82.8%) | 375
(65.6%) | 1206
(80.2%) | 519
(75.3%) | Number of speed pairs (chase car, PeMS 5-minute data) Defined as the 8:00 to 10:00 AM sampling period ^c Defined as the 11:30 AM to 2:30 PM and 4:00 to 5:30 PM sampling periods ^d Defined as the 5:30 to 9:00 PM sampling period Chase Car and PeMS Speeds for I-105E AM Period **Chase Car and PeMS Speeds for I-105E Midday Period** Chase Car and PeMS Speeds for I-105W AM Period Chase Car and PeMS Speeds for I-105W Midday Period Chase Car and PeMS Speeds for I-110N PM Period **Speed Differences by Individual Loop** | Difference in Speeds as a Function of Lane Number (Chase Car Speed - PeMS Speed) | | | | | | | |--|------------------|------------------|------------------|-----------------|-----------------|-----------------| | | | 105 E | | 105 W | | 110 N | | | | AM | Midday | AM | Midday | PM | | ML Lane 1 | N | 230 | 474 | 198 | 557 | 179 | | Chase Car Speed
PeMS Speed | Mean
Mean | 70.21
54.87 | 64.89
50.25 | 59.10
54.47 | 67.27
57.65 | 72.54
63.66 | | Speed Difference | Mean
(StdErr) | 15.34
(0.90)* | 14.65
(0.63)* | 4.63
(0.56)* | 9.62
(0.44)* | 8.88
(0.47)* | | ML Lane 2 | N | 239 | 482 | 280 | 694 | 273 | | Chase Car Speed
PeMS Speed | Mean
Mean | 65.25
55.04 | 61.41
50.71 | 54.17
51.42 | 62.94
57.91 | 67.94
63.30 | | Speed Difference | Mean
(StdErr) | 10.21
(0.87)* | 10.71
(0.63)* | 2.75
(0.58)* | 5.04
(0.35)* | 4.64
(0.36)* | | ML Lane 3 | N | 96 | 216 | 93 | 243 | 175 | | Chase Car Speed
PeMS Speed | Mean
Mean | 62.50
55.54 | 56.44
49.10 | 52.67
52.31 | 60.09
57.86 | 65.31
63.16 | | Speed Difference | Mean
(StdErr) | 6.96
(1.32)* | 7.34
(0.95)* | 0.37
(0.84) | 2.22
(0.73)* | 2.15
(0.47)* | | ML Lane 4 N | N | 0 | 1 | 1 | 9 | 62 | | Chase Car Speed
PeMS Speed | Mean
Mean | - | -
- | - | 60.74
57.98 | 62.54
64.16 | | Speed Difference | Mean
(StdErr) | - | -
- | - | 2.76
(2.56) | -1.62
(0.84) | ⁻¹²⁻ #### ANALYSIS OF TRAVEL MODEL SPEEDS - Chase car speed measurements from the Fall 2000 route-based driving study were compared to link speeds from SCAG model - Spatial processing was performed to compute average chase car speed as it traversed each link - A total of roughly 1300 link speed measurements were obtained, covering a mixture of freeways and arterials and times of day - Few repeat observations (~2-4) were available for each individual link - Since chase car speeds were compared to single model speed for each multi-hour modeling period, in-period variation had to be addressed: ## ANALYSIS OF TRAVEL MODEL SPEEDS (cont.) • The data were grouped by facility type (freeway or arterial) to address small sample sizes and in-period variation Comparison of Measured and Model Link Travel Times Major Arterials, Midday Period Distribution of Speed Measurements for Each Facility Type Midday Period (30-Minute Intervals) ### **ANALYSIS OF TRAVEL MODEL SPEEDS (cont.)** - Statistically significant quantitative conclusions could not be drawn - However, qualitative comparisons indicate the model <u>may</u>: - Under-predict midday freeway speeds - Over-predict midday and PM major arterial and midday minor arterials speeds #### **CONCLUSIONS AND RECOMMENDATIONS** ### **Conclusions** - Review of available speed monitoring systems shows there is no single source that routinely covers all roadways - PeMS is an attractive source of continuous freeway data - Chase cars provide very accurate speed measurements, but coverage is limited and not routinely collected - Comparative analysis of PeMS loops along three freeway corridors indicates PeMS consistently under-estimates actual speed measured by chase cars between 3 and 12 mph - Further refinement of g-factor algorithms and data filtering is needed before PeMS data could be used for validation of SCAG model - Limited chase car measurements indicate <u>possible</u> biases in SCAG model speeds #### Recommendations - A sample size analysis must be conducted to define minimum dataset required to account for in-period, vehicle-to-vehicle and day-to-day speed variations and enable statistically-significant model validation - Coordinate with Caltrans and Berkeley/PATH on mechanisms to improve PeMS speeds and routinely obtain data from the system - Develop a program for regular collection of speed measurements on arterial roads